Risk Factors and Injury Prevention in the Throwing Athlete

Daniel Kline, P.T., D.P.T, S.C.S., Sarah Kate Fischer, P.T., D.P.T., S.C.S., Garrett S. Bullock, P.T., D.P.T., D.Phil., Michael J. Kissenberth, M.D., Ellen Shanley, P.T., Ph.D., O.C.S., and Charles A. Thigpen, P.T., A.T.C., Ph.D.

Abstract: Arm injuries are the most common throwing injury, with growing concern as the most severe injuries, such as UCL reconstruction, continue to rise. Furthermore, throwing injuries are frequently recurrent, suggesting once injured, players are at increased risk for another arm injury. The increase in injury rates and severity has been attributed to increases in pitching volume and year-round participation, and specialized training. Thus, initial efforts to prevent arm injuries by USA Baseball and Little League have focused on the extrinsic factor of pitching exposure in the form of pitch counts, yet arm injury rates have stayed constant. Therefore, injury prevention strategies should include extrinsic factors and address modifiable, intrinsic factors that are associated with arm injury. Collectively addressing factors, such as shoulder range of motion and strength deficits, trunk and lower extremity function, and implantation of training programs yields a comprehensive approach to reduce arm injury rates. We will use a directed acyclic graph (DAG) to organize how the internal factors (i.e., fatigue, injury history, range of motion, and strength) interact with the external factors (i.e., training load and pitching exposure) and how together they are thought contribute to potential injury and inform arm injury reduction strategies. This will provide a roadmap to build adaptable arm injury reduction strategies to improve the modifiable physical factors in context of the external factors that change over time and between throwing athletes. **Level of Evidence:** Level V, expert opinion.

injuries are

In the United States, the number of baseball and softball players combine to represent nearly 1 million athletes across the high school and collegiate setting. Other throwing athletes, such as quarterbacks and javelin throwers, are under-represented in the throwing literature due to smaller total numbers by sport, position, or event. All of these athletes are at an inherently greater risk of injury to the shoulder and elbow as they participate at high exposure rates as both youth and adult athletes. It is numbered to save the participate at high exposure rates as both youth and adult athletes.

sport, position, or event. ^{3,4} All of these athletes are at an inherently greater risk of injury to the shoulder and elbow as they participate at high exposure rates as both youth and adult athletes. ³⁻¹⁴ Risk of injury is greatest

The physical Therapy, Greenville, South Carolina, U.S.A. (D.K., E.S., C.A.T.); Boston Ballet, Boston, Massachusetts, U.S.A. (S.K.F.); Department of Orthopaedic Surgery, Wake Forest University School of Medicine, North

The provided of these athletes are at an injuries per 1,000 athletic exposures. ^{5-13,17,18} No matter the type of injury sustained, effects can be felt beyond playing throughout their lifetime. ^{19,20}

While the literature is rich with information regarding the epidemiology of upper extremity injuries in the throwing athlete, ^{12,21,22} the majority has been focused on the baseball athlete. Though the injury type and severity are known, the direct causes of an upper

Carolina, U.S.A. (M.J.K.). Received September 5, 2024; accepted October 26, 2024.

Address correspondence to Charles A. Thigpen, P.T., A.T.C., Ph.D., ATI Physical Therapy, 200 Patewood Dr., Suite C150, Greenville, SC, 29615, U.S.A. E-mail: Charles.Thigpen@atipt.com

Carolina, U.S.A. (G.S.B.); Department of Biostatistics and Data Science, Wake

Forest University School of Medicine, North Carolina, U.S.A. (G.S.B.); and Steadman Hawkins Clinic of the Carolinas, Prisma Health, Greenville, South

© 2024 THE AUTHORS. Published by Elsevier Inc. on behalf of the Arthroscopy Association of North America. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 2666-061X/241456

https://doi.org/10.1016/j.asmr.2024.101037

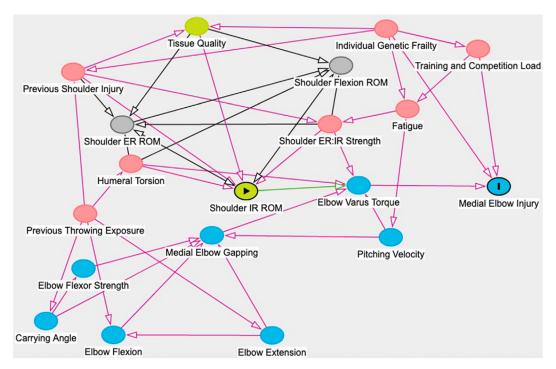
While the literature is rich with information regarding the epidemiology of upper extremity injuries in the throwing athlete, ^{12,21,22} the majority has been focused on the baseball athlete. Though the injury type and severity are known, the direct causes of an upper extremity injury remain ambiguous. Recently, Bullock et al. presented the directed acyclic graph (DAG) on medial elbow injury from the current knowledge base of possible risk factors (Fig. 1). ²³ The DAG shows how the internal factors (i.e., fatigue, injury history, range of motion [ROM], and strength) interact with the external factors (i.e., training load and pitching exposure) and how together they are thought to contribute to poten-

tial injury.²³ The DAG demonstrates the complex

interactions of these risk factors with one another,

demonstrating the multiple direct and indirect

for pitchers, catchers, and individuals who are throwing


more frequently and with higher effort during a single session or over a season. ^{5-13,15-17} Often times, these

nature. 6,7,9,13,16 Upper extremity injury rates from

throwing vary across sport, with ranges from 0.98 to 4.0

chronic or acute-on-chronic in

1

Fig. 1. Directed acyclic graph of medial elbow injury. Reproduced from Bullock et al. "Shoulder Range of Motion Measurements and Baseball Elbow Injuries: Ambiguity in Scientific Models, Approach, and Execution is Hurting Overhead Athlete Health" *Arthrosc Sports Med Rehabil* 2023;5:e297—e304

influence on causation. This is further challenged, as some of these internal and external factors are modifiable, while others are not. Modifiable factors include ROM, strength, and workload, while nonmodifiable factors include components, such as genetics, tissue quality, and bony morphology. While the nonmodifiable risk factors are important when considering an athlete's injury risk, this article will focus on modifiable risk factors of upper extremity injury and discuss strategies to reduce injury.²³

Range of Motion

Appropriate ROM is foundational for the throwing athlete across sports, age, and gender, and tissue extensibility is the most widely studied factor of the throwing athlete. Negative changes to ROM, often a loss of required motion, have been shown to result in pain and dysfunction both locally, at adjacent joints through regional interdependence and across the body via the global interdependence of the kinetic chain.

Total Arc

Total arc of motion (TARC) has been defined as the total amount of shoulder external rotation (ER) plus internal rotation (IR), which should be similar in cumulative value bilaterally, but individual values may shift between the throwing arm and nonthrowing arm.²⁴ Total arc of motion differences >5°, with decreased ROM in the dominant arm, are present in

athletes across all age and skill levels and is associated with injury. This has been specifically identified in both major and minor league baseball settings. ^{5,18,24,25} This does not include normal ROM loss that occurs in the short term immediately after pitching and can last at least 24 hours. ^{26,27} Changes in the TARC of the throwing arm occur throughout the season and throughout a career. ²⁸⁻³⁰ Over the season, professional and collegiate pitchers demonstrate increased ER and TARC, as well as minimal IR loss. ²⁸⁻³¹ By the end of a professional career, however, the literature demonstrates a decrease in TARC. ³² Wilcox et al. found that younger athletes (14 years and under) had significantly less IR than older athletes, high school to professional, and reduced TARC overall. ³³

External and Internal Rotation

The components of TARC play an important role, as each individual measure has been linked to injury risk. Although an increase of ER can be seen immediately after throwing, it is followed over the next few days by loss of motion (Figure 2). Over the course of a youth or professional season, ER is expected to increase. Research has demonstrated that a reduction in ER greater than 5° may be associated with injury. 25,28,29,31,34-36

Aberrant IR, primarily referencing a deficit of IR, can have large repercussions for the throwing athlete. This can lead to TARC loss or glenohumeral internal rotation

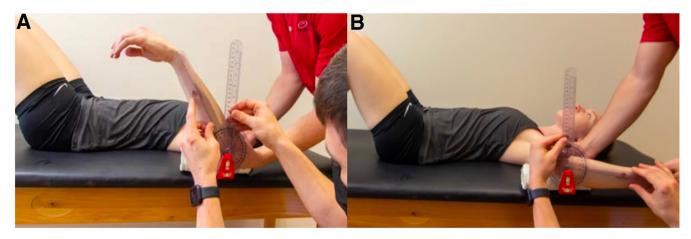


Fig. 2. Shoulder external and internal rotation range of motion. (A) Internal range of motion measure. (B) External range of motion measure.

deficit (GIRD). GIRD refers to the loss of shoulder IR after throwing due to soft tissue and neuromuscular changes.³⁷ Deficits in IR have been linked to upper extremity injury risk in throwers.^{5,18,24,36,38,39} Shanley et al.^{5,18} demonstrated a significant association between an IR loss of 13-25° and a 4-6 times greater risk of injury in the youth athlete; Shitara et al. 36 reported a 7° IR loss resulting in 2 times the risk of injury. In the professional population, >20° IR loss has been associated with a 1.9-fold increased risk of shoulder injury.²⁴ Although IR loss can be seen at all ages, youth athletes under 14 years old present with overall less IR than their older counterparts.³³ Nonpitchers with a history of shoulder injury had more ER and less IR compared to the other side than nonpitchers with no history of injury.²⁸ This difference could be attributed to osseous changes of humeral torsion (HT).31,40-42

Humeral Torsion

Unlike other ROM components, humeral torsion is nonmodifiable. Humeral torsion is the amount of bony rotation at the long axis of the humerus. Increased posterior rotation, referred to as retrotorsion, results in increased ER and consequently less IR. 31,40-43 In the professional setting, increased torsion posteriorly may have a positive effect on injury rates as one study showed that pitchers with shoulder injury demonstrated 4° less of dominant arm humeral torsion than those without injury. 40 In a youth population, HT was not associated with injury. Greenberg et al. identified that after adjusting for HT, the significance of GIRD was no longer observed in youth athletes 9–12 years old. 44 Understanding this information can also assist in knowing the potential TARC. 31,41-43

Horizontal Adduction

Loss of horizontal adduction (HA) has been associated with shoulder injury and increased joint stresses in

throwers of all ages and competitive levels.^{5,18,45} Despite an expected 7° loss across a youth season, Shanley et al. demonstrated that a 15° loss of HA of the throwing arm compared to the nonthrowing arm increased injury risk by 4.1 times in adolescents.^{5,18,31} This loss of motion can contribute to increased stress at the anterior shoulder and elbow leading to potential injury, and by minimizing HA loss to 10° from neutral can help reduce those stresses.⁴⁵ Conversely, major league pitchers display a seasonal increase of horizontal adduction in their dominant arm by an average of 15.7°.³⁰ A loss of horizontal adduction (Figure 3) in this population, however, remains indicative of injury.³⁸

Flexion

Shoulder flexion is another measure associated with potential injury risk to the throwing athlete. Wilk et al. ³⁹ demonstrated that a 5° loss of shoulder flexion has been associated with increased elbow injury. Another study showed that shoulder flexion loss was a major contributor to upper extremity injury risk in conjunction with a loss of ER. ³⁴

Elbow Extension

While not studied in-depth, elbow ROM is important for the overhead athlete. Wright et al. 46 showed that the dominant elbow of pitches can present with overall less total arc of motion with decreases to both flexion and extension compared to the nondominant extremity. Sakata et al. 47 established an association between elbow extension ROM and medial elbow injuries. With a >5° loss of elbow extension increasing risk in the youth population.

Strength

While ROM is foundational and has received the most attention in research, the ability to control the throwing motion is determined by muscle performance. Most

Fig. 3. Passive horizontal adduction range of motion.

often, muscle performance has been measured as shoulder strength reflecting the large periarticular shoulder muscles and deeper rotator cuff. ^{36,48,49} Both Byram et al. ⁴⁸ and Tyler et al. ⁴⁹ showed similar trends that weakness of dominant arm scaption compared to the nondominant arm could increase risk of injury.

Preseason weakness in the dominant compared to nondominant arm of prone ER, prone IR, and the supraspinatus muscle have been linked to in-season throwing-related injury^{36,48} (Figure 4). Achieving symmetry in bilateral upper extremity strength measures and working to improve ER/IR ratios are important injury reduction strategies. Attaining the recommended ER/IR strength ratio is important for dynamic stabilization and acceleration/deceleration of the GHJ during throwing. Byram et al.⁴⁸ showed a higher shoulder injury risk on athletes who demonstrated lower prone strength ratios. Therefore, it is

important for injury reduction.^{36,48} Current research recommends measuring the ER:IR ratios in the 90–90 position and that this ratio be between 0.66 and 0.78 at minimum for return to sport.^{50,51} Understanding normative data among throwing athletes will aid in diagnosis, prognosis, and creating an effective plan of care.

Throwing Load

In conjunction with ROM and strength differences, fatigue and overuse are additional modifiable factors that may contribute to upper extremity injury risk. ⁵²⁻⁵⁴ Injured and painful athletes regularly demonstrate higher throws per day, total pitches, total innings, and appearances. ^{47,52,55} Olsen et al. ⁵² found that pitching with fatigue can increase the risk of injury by 36-fold.

Endurance is an essential element of the rehabilitation process due to the high volume of throws these athletes perform during practice and competition. Studies have shown that a higher volume of throws increases injury risk, 47,52,53 and multiple other studies demonstrate that pitching while fatigued increases risk of injury. No studies have specifically looked at endurance of throwers, but without proper endurance, these athletes may fatigue quickly causing alterations in their throwing mechanics, which may lead to potential injury. 53,58-61

Pitch/Throw Count

Olsen et al. and Sakata et al. found that youth athletes throwing over 100 throws or pitches per day can lead to injury. Monitoring pitch count to stay within age-appropriate norms would appear to be a simple way to lower overall injury risk from fatigue, but pitch

Fig. 4. Strength measures at 90° of abduction in prone. (A) External rotation at 90° of abduction strength test. (B) Internal rotation at 90° of abduction strength test.

counts can be deceiving. In a study of high school pitchers, Zaremski et al.⁵⁶ demonstrated that 42% of higher-effort pitching, which was performed as a warm-up or between innings, was unaccounted for in pitch count. Furthermore, a study of a single youth team showed that pitchers on game days can throw an average of 158 total throws versus 119 throws on nonpitching days.⁵⁷ MLB's Pitch Smart program provides a good overview of number of pitches per outing and recommended days of rest.⁶² (Table 1: number of pitches and days' rest chart). These recommendations are a good starting place and can benefit the athlete to change positions to a spot with less number of high effort or total volume of throws, as these have been shown to increase injury risk. 63 Examples of this would include not performing as a pitcher and catcher in the same session and accounting for total pitches and throws if playing on multiple teams or in different leagues.

High Effort/Velocity

Not only does the total number of throws matter, but high effort and velocity may lead to injury. ^{52,64-67} Throwing at higher velocity and higher intensity was consistently shown to increase risk of injury to the upper extremity. ^{64.} Two studies have also linked high amounts of fastball utilization with injury. ^{65,67} Another possible contributor may be using the strategies for increasing spin rate by trying to create more break on the ball. ⁶⁸ When possible, it is recommended to consistently use the same monitoring strategy whether it is an arm monitoring inertial device, radar gun, or rating of perceived exertion.

Previous Injury History

Previous injury is a well-documented, nonmodifiable risk factor for injury. ^{15,69-73} In a large cohort study by Shanley et al. ⁷⁴, 16 of 63 injured subjects would go on to sustain further injuries throughout their careers. Bullock et al. ⁷⁰ showed a previous arm injury rate of 69% in all minor league pitchers across an organization. A previous injury within the kinetic chain was present for 43% of those players who sustained an

initial arm injury and 50% within the subsequent arm injury group. This same study also identified an increased rate of shoulder injury after a previous shoulder or elbow injury.

Even surgical graft sites have been shown to increase the risk of injuries locally at the site of harvest.⁷² Knowledge of a harvest site, previous surgery, or injury to any part of the athlete can affect the whole individual.^{70,72,75} As seen in the Bullock et al. study, a nonmodifiable risk factor of previous injury has played a role in injury, which allows us to address the modifiable risk factor of the kinetic chain.⁷⁰

Kinetic Chain

Because of the high demand of throwing on the kinetic chain, previous injury is not limited to the upper extremity. Injuries sustained throughout the body can potentially affect the throwing arm. A study of 60 people reported that distal limitations in mobility, strength, balance, or stability could affect scapular mechanics and subsequently upper extremity mechanics. Slowik et al. showed in a laboratory study how changing foot placement alone can alter the stresses to the upper extremity. This means for the throwing athlete that even a minor injury to another body part can alter the mechanics of the throwing athlete leading to changes in stresses.

Proximally to the upper extremity, the cervical spine and thoracic spine have been implicated as potential risk factors. Throwers who presented with less than 39° during the cervical flexion and rotation test had poorer arm health and increased risk of time loss injury. Cervical spine rotation is extremely important for the throwing athlete, as it helps to control the thrower's ability to acquire the target and sustain focus throughout. Sakata et al. Showed an increase in elbow pain and injury when throwers presented with more than 30° of thoracic kyphosis in standing. With the upper extremity being supported by the thoracic spine, an alteration of increased thoracic flexion can lead to poorer scapular mobility leading to decreased shoulder and elbow performance. Kibler and Burkart

Table 1	. Number	of Pitch	es and	Rest D	Day	Recommendations
---------	----------	----------	--------	--------	-----	-----------------

Age	Max Daily	No Rest	l Day's Rest	2 Days' Rest	3 Days' Rest	4 Days' Rest	5 Days' Rest
7-8	50	1-20	21-35	36-50			
9-10	75	1-20	21-35	36-50	51-65	66+	
11-12	85	1-20	21-35	36-50	51-65	66+	
13-14	95	1-20	21-35	36-50	51-65	66+	
15-16	95	1-20	21-35	36-50	51-75	76+	
17-18	105	1-30	31-45	46-60	61-80	81+	
19-22	120	1-30	31-45	46-60	61-80	81-105	106 +

Adapted from MLB's Pitch Smart Guidelines.

emphasized the importance of scapular control in the overhead athlete and its effects on injury. 83,84

While the upper extremity is always the focus of the throwing athlete, the lower extremity is often overlooked. The lower extremity is important from the time motion starts to it finishes. Campbell et al. showed the importance of the lower extremity strength and endurance in pitching mechanics due to the high forces being generated and attenuated through the lower half.⁸⁵ Lack of ROM and strength in the lower extremity can alter mechanics leading to changes in stresses seen at the elbow and shoulder.⁷⁸ Aberrant hip mobility and strength have also demonstrated links to increased risk for shoulder and elbow injury. 76,86-88 One study of adolescent throwers found a potential link to elbow pain and injury in throwers with limited hip ROM.86 Plummer et al. showed a decrease in trunk rotation to home plate in pitchers with decreased stance leg internal rotation in a study of high school throwers.⁸⁷ Hip abduction strength asymmetry and lower scores on the lower extremity Y-balance have been present in injured athletes. 76,88

Arm Injury Reduction Program

Arm injury reduction programs are framed by the DAG and informed by the risk factors discussed. Throwing athletes that have an injury history should be prioritized given their reinjury and subsequent injury risk. When considering specific modifiable factors, the program should have three primary components, muscle extensibility, muscle performance, and throwing preparation.

Muscle Extensibility

Mobility and strength deficits throughout full kinetic chain and poor load management can be implicated in injury to the upper extremity of the throwing athlete, as we discussed. Losses of both mobility and strength have been identified across both single sessions and the course of a season. ^{26,27,31} Screening these athletes, even one time, and developing appropriate, individualized interventions have been shown to reduce overall injury risk. ^{89,90} Arm care programs should ideally address the mobility and strength of the entire upper extremity (Figure 5). Programs that address maintenance of posterior shoulder tissue extensibility have been shown

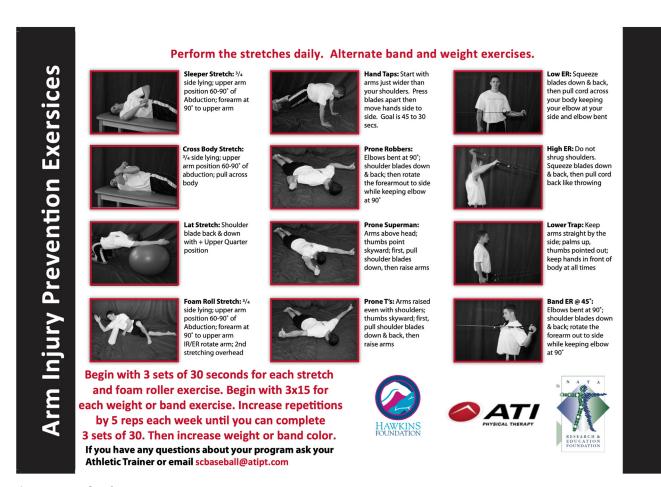


Fig. 5. Example of injury prevention poster.

to be effective in reducing injury risk. 91,92 Appropriate posterior shoulder extensibility can be achieved with horizontal adduction and internal rotation stretching. 92-94 Mobility exercises that address shoulder flexion are important as well for athletes to achieve appropriate arm slots and reduce risk of elbow injury. 25,34

Muscle Performance

Arm performance maintenance programs have been shown to be effective through simple shoulder exercises performed a few times per week leading up to and during the season. Exercises should emphasize the individual deficits found on assessment to minimize the individual's risk. Weakness or tightness of the posterior cuff has been linked to injury risk, as well as strength deficits possible in athletes after injury; therefore, it is important to address these muscles. 48,49,95 Strengthening the posterior cuff through shoulder external rotations exercises in various planes of abduction can address common deficits (Figure 5). Recruitment activities of scapular stabilizers are beneficial for both performance athletic and upper extremity health. 79,96,97

Throwing Preparation

Preparing to throw is a recurrent process that starts 8–12 weeks prior to the season and continues throughout the season after every time on the mound. Leading up to the season, this begins with an interval throwing program where athletes initially begin by throwing every other day and progress to throwing every day closer to the season. Distances and efforts should start low and slowly increase over time. Athletes should also design their progressive throwing programs to be similar to their expected weekly throwing volume (i.e., a pitcher replicating their 5- or 7-day weekly pitching routine). During this build-up, using a consistent effort monitoring device or fatigue management system, such as pitch count or inertial devices, is recommended.

As practice or the season begins, a consistent warmup for throwing athletes should be implemented following best practice. This includes movements that are multi-joint, sport-specific, target ROM deficits, and prep sport-specific prime movers.⁵⁹ An example of a warm-up for a throwing athlete could include soft tissue mobility and stretching followed by moving stretches that incorporate balance and key sport positions like lunges and single-leg hip hinging. Dynamic warm-ups and full-body mobility programs have shown success in reducing elbow injury in youth throwers by preparing the entire kinetic chain to throwing. 94,98,99 participate in the activity of Shortened-stretch exercises and muscle preparation activities, known as "2 out drill" has shown to be

effective in restoring ROM after a bout of high-effort throwing. 100

Arm care after throwing is just as important as the preparatory work. With ROM and strength losses occurring immediately after throwing, offsetting the daily compounding effects of throwing is necessary. Performing similar stretching and mobility activities of the upper extremity immediately after completion can be beneficial in restoring motion to prethrow levels. With the repetitive unilateral movement of throwing, full-body mobility exercises addressing the contralateral side and opposite rotational directions can help to restore homeostasis of the kinetic chain. At times, soft tissue intervention from assistance of a health care provider helps restore ROM loss faster than stretching alone. 93 This can be achieved through use of instrumented soft tissue mobility directed as the posterior rotator cuff or other less extensible tissue.

Conclusions

Reducing the risk of upper extremity injury in the throwing athlete is a difficult process due to the multiple factors at play. These risk factors are extensively intertwined with both causative and correlative effects between them.²³ Familiarity with ROM, strength expectations, and normative values can help to identify deficits requiring interventions. Following appropriate guidelines set by Major League Baseball's Pitch Smart Program can assist athletes, parents, and coaches to manage and modify throwing load. Understanding injury history and its effects on the kinetic chain can guide proper interventions to offset faulty mechanics. Combining awareness of all these risk factors with appropriate education and interventions can help providers reduce the risk of upper extremity injury in throwing athletes.

Disclosures

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: M.J.K. reports consulting and advisory fees from Arthrex. All other authors (D.K., S.K.F., G.S.B., E.S., C.A.T.) declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Funding

Funded in part by NATA Research and Education Foundation. There is not an associated grant number.

References

 National Collegiate Athletics Association. NCAA Sports Sponsorship and Participation Rates Report (1956-57 through 2023-24). https://www.ncaa.org/sports/2013/

11/20/sports-sponsorship-and-participation-research. aspx, 2024. Accessed December 12, 2024.

- National Federation of State High School Associations. 2018–19 High School Athletics Participation Survey. https://www.nfhs.org/sports-resource-content/high-school-participation-survey-archive/, 2020. Accessed December 12, 2024.
- 3. Meron AM, Saint-Phard DM. Track and field throwing sports: Injuries and prevention. *Curr Sports Med Rep* 2017;16:391-396.
- Radel LC, Kobelski GP, O'Brien MJ, Meehan WP 3rd, Sugimoto D. Youth American football quarterback injuries: A descriptive study of 15 years of retrospective data. *Phys Sportsmed* 2020;48:463-468.
- Shanley E, Rauh MJ, Michener LA, Ellenbecker TS, Garrison JC, Thigpen CA. Shoulder range of motion measures as risk factors for shoulder and elbow injuries in high school softball and baseball players. *Am J Sports Med* 2011;39:1997-2006.
- Conte S, Camp CL, Dines JS. Injury trends in Major League Baseball over 18 seasons: 1998–2015. Am J Orthop 2016;45:116-123.
- Camp CL, Dines JS, van der List JP, et al. Summative report on time out of play for major and minor league baseball: An analysis of 49,955 injuries from 2011 through 2016. Am J Sports Med 2018;46:1727-1732.
- 8. Wasserman EB, Sauers EL, Register-Mihalik JK, et al. The first decade of Web-based sports injury surveillance: descriptive epidemiology of injuries in US high school boys' baseball (2005–2006 through 2013–2014) and National Collegiate Athletic Association Men's Baseball (2004–2005 Through 2013–2014). *J Athl Train* 2019;54: 198-211.
- Saper MG, Pierpoint LA, Liu W, Comstock RD, Polousky JD, Andrews JR. Epidemiology of shoulder and elbow injuries among United States high school baseball players: School years 2005–2006 through 2014–2015. Am J Sports Med 2018;46:37-43.
- **10.** Laudner K, Sipes R. The incidence of shoulder injury among collegiate overhead athletes. *J Intercoll Sports* 2009;2:260-268.
- Pytiak AV, Kraeutler MJ, Currie DW, McCarty EC, Comstock RD. An epidemiological comparison of elbow injuries among United States high school baseball and softball players, 2005–2006 through 2014–2015. Sports Health 2018;10:119-124.
- 12. Posner M, Cameron KL, Wolf JM, Belmont PJ Jr, Owens BD. Epidemiology of Major League Baseball injuries. *Am J Sports Med* 2011;39:1676-1680.
- 13. Boltz AJ, Powell JR, Robison HJ, Morris SN, Collins CL, Chandran A. Epidemiology of injuries in National Collegiate Athletic Association men's baseball: 2014–2015 through 2018–2019. *J Athl Train* 2021;56:742-749.
- 14. Matsuura T, Suzue N, Iwame T, Sairyo K. Epidemiology of shoulder and elbow pain in youth baseball players (Abstract). *J Shoulder Elbow Surg* 2014;23:E321.
- **15.** Tooth C, Gofflot A, Schwartz C, et al. Risk factors of overuse shoulder injuries in overhead athletes: A systematic review. *Sports Health* 2020;12:478-487.
- 16. Camp CL, Conte S, D'Angelo J, Fealy S. Epidemiology of ulnar collateral ligament reconstruction in major and minor league baseball pitchers: Comprehensive report

- on 1,313 cases. *Orthop J Sports Med* 2017;5: 2325967117S00369.
- 17. Veillard KL, Boltz AJ, Robison HJ, Morris SN, Collins CL, Chandran A. Epidemiology of injuries in National Collegiate Athletic Association women's softball: 2014–2015 through 2018–2019. *J Athl Train* 2021;56:734-741.
- **18.** Shanley E, Kissenberth MJ, Thigpen CA, et al. Preseason shoulder range of motion screening as a predictor of injury among youth and adolescent baseball pitchers. *J Shoulder Elbow Surg* 2015;24:1005-1013.
- **19.** Bullock GS, Nicholson KF, Waterman BR, et al. Health conditions, substance use, physical activity, and quality of life in current and former baseball players. *Orthop J Sports Med* 2021;9:23259671211056645.
- **20.** Sauers EL, Dykstra DL, Bay RC, Bliven KCH, Synder AR. Upper extremity injury history, current pain rating, and health-related quality of life in female softball pitchers. *J Sports Rehabil* 2011;20:100-114.
- **21.** Shanley E, Rauh MJ, Michener L, Ellenbecker T. Incidence of injuries in high school softball and baseball players. *J Athl Train* 2011;46:648-654.
- 22. Dick RW, Sauers EL, Agel J, et al. Descriptive epidemiology of collegiate men's baseball injuries: National Collegiate Athletic Association Injury Surveillance System, 1988–1989 through 2003–2004. *J Athl Train* 2007;42: 183-193.
- 23. Bullock GS, Thigpen CA, Martin CL, et al. Shoulder range of motion measurements and baseball elbow injuries: Ambiguity in scientific models, approach, and execution is hurting overhead athlete health. *Arthrosc Sports Med Rehabil* 2023;5:e297-e304.
- **24.** Wilk KE, Macrina LC, Fleisig GS, et al. Correlation of glenohumeral internal rotation deficit and total rotational motion to shoulder injuries in professional baseball pitchers. *Am J Sports Med* **2011**;39:329-335.
- **25.** Wilk KE, Macrina LC, Fleisig GS, et al. Deficits in gle-nohumeral passive range of motion increase risk of shoulder injury in professional baseball pitchers: A prospective study. *Am J Sports Med* 2015;43:2379-2385.
- 26. Reinold MM, Wilk KE, Macrina LC, et al. Changes in shoulder and elbow passive range of motion after pitching in professional baseball players. *Am J Sports Med* 2008:36:523-527.
- **27.** Mirabito NS, Topley M, Thomas SJ. Acute effect of pitching on range of motion, strength, and muscle architecture. *Am J Sports Med* 2022;50:1382-1388.
- **28.** Dwelly PM, Tripp BL, Tripp PA, Eberman LE, Gorin S. Glenohumeral rotational range of motion in collegiate overhead-throwing athletes during an athletic season. *J Athl Train* 2009;44:611-618.
- **29**. Chan JM, Zajac J, Erickson BJ, et al. Upper extremity and hip range of motion changes throughout a season in professional baseball players. *Am J Sports Med* 2020;48: 481-487.
- 30. McGraw MH, Vrla M, Wang D, et al. Shoulder and elbow range of motion can be maintained in Major League Baseball pitchers over the course of the season, regardless of pitching workload. *Orthop J Sports Med* 2019;7: 2325967118825066.
- **31.** Oyama S, Hibberd EE, Myers JB. Changes in humeral torsion and shoulder rotation range of motion in high

- school baseball players over a 1-year period. *Clin Biomech* 2013;28:268-272.
- **32.** Scher S, Anderson K, Weber N, Rand K, Bey MJ. Associations among hip and shoulder range of motion and shoulder injury in professional baseball players. *J Athl Train* 2010;45:191-197.
- **33.** Wilcox CL, Plummer HA, Ostrander IIIRV. Comparison of glenohumeral range of motion deficits in youth, collegiate, and professional baseball players. *Int J Sports Phys Ther* 2021;16:1485-1491.
- 34. Camp CL, Sinatro A, Spiker A, et al. Decreased shoulder external rotation and flexion are greater predictors of injury than internal rotation deficits: Analysis of 132 pitcher-seasons in professional baseball. *Orthop J Sports Med* 2017;33:1629-1636.
- 35. Pozzi F, Plummer HA, Shanley E, et al. Preseason shoulder range of motion screening and in-season risk of shoulder and elbow injuries in overhead athletes: Systematic review and meta-analysis. *Br J Sports Med* 2020;54:1019-1027.
- 36. Shitara H, Kobayashi T, Yamamoto A, et al. Prospective multifactorial analysis of preseason risk factors for shoulder and elbow injuries in high school baseball pitchers. *Knee Surg Sports Traumatol Arthrosc* 2017;25: 3303-3310.
- **37.** Kibler W, Sciascia A, Thomas S. Glenohumeral internal rotation deficit: Pathogenesis and response to acute throwing. *Sports Med Arthrosc Rev* 2012;20:34-38.
- **38.** Bullock GS, Faherty MS, Ledbetter L, Thigpen CA, Sell TC. Shoulder range of motion and baseball arm injuries: A systematic review and meta-analysis. *J Athl Train* 2018;53:1190-1199.
- **39.** Wilk KE, Macrina LC, Fleisig GS, et al. Deficits in gle-nohumeral passive range of motion increase risk of elbow injury in professional baseball pitchers: A prospective study. *Am J Sports Med* 2014;42:2075-2081.
- **40.** Noonan TJ, Thigpen CA, Bailey LB, et al. Humeral torsion as a risk factor for shoulder and elbow injury in professional baseball pitchers. *Am J Sports Med* 2016;44: 2214-2219.
- **41.** Whiteley RJ, Ginn KA, Nicholson LL, Adams RD. Sports participation and humeral torsion. *J Orthop Sports Phys Ther* 2009;39:256-263.
- **42.** Takeuchi S, Yoshida M, Sugimoto K, Tsuchiya A, Takenaga T, Goto H. The differences of humeral torsion angle and the glenohumeral rotation angles between young right-handed and left-handed pitchers. *J Shoulder Elbow Surg* 2019;28:678-684.
- **43.** Helmkamp JK, Bullock G, Rao A, Shanley E, Thigpen C, Garrigues GE. The relationship between humeral torsion and arm injury in baseball players: A systematic review and meta-analysis. *Sports Health* 2020;12:132-138.
- **44.** Greenberg EM, Fernandez-Fernandez A, Lawrence JT, McClure P. The development of humeral retrotorsion and its relationship to throwing sports. *Sports Health* 2015;7:489-496.
- **45.** Laudner K, Wong R, Evans D, Meister K. The effects of restricted glenohumeral horizontal adduction motion on shoulder and elbow forces in collegiate baseball pitchers. *J Shoulder Elbow Surg* 2021;30:396-400.

- Wright RW, Steger-May K, Wasserlauf BL, O'Neal ME, Weinberg BW, Paletta GA. Elbow range of motion in professional baseball pitchers. *Am J Sports Med* 2006;34: 190-193.
- 47. Sakata J, Nakamura E, Suzukawa M, Akaike A, Shimizu K. Physical risk factors for a medial elbow injury in junior baseball players: A prospective cohort study of 353 players. *Am J Sports Med* 2017;45:135-143.
- **48.** Byram IR, Bushnell BD, Dugger K, Charron K, Harrell FE Jr, Noonan TJ. Preseason shoulder strength measurements in professional baseball pitchers: Identifying players at risk for injury. *Am J Sports Med* **2010**;38: 1375-1382.
- **49**. Tyler TF, Mullaney MJ, Mirabella MR, Nicholas SJ, McHugh MP. Risk factors for shoulder and elbow injuries in high school baseball pitchers: The role of preseason strength and range of motion. *Am J Sports Med* 2014;42: 1993-1999.
- 50. Cools AM, Vanderstukken F, Vereecken F, et al. Eccentric and isometric shoulder rotator cuff strength testing using a hand-held dynamometer: reference values for overhead athletes. *Knee Surg Sports Traumatol Arthrosc* 2016;24:3838-3847.
- Ellenbecker T, Mattalino AJ. Concentric isokinetic shoulder internal and external rotation strength in professional baseball pitchers. *J Sports Phys Ther* 1997;25: 323-328.
- **52.** Olsen SJ 2nd, Fleisig GS, Dun S, Loftice J, Andrews JR. Risk factors for shoulder and elbow injuries in adolescent baseball pitchers. *Am J Sports Med* 2006;34:905-912.
- **53.** Lyman S, Fleisig G, Andrews J, Osinski ED. Effect of pitch type, pitch count, and pitching mechanics on risk of elbow and shoulder pain in youth baseball pitchers. *Am J Sports Med* 2002;30:463-468.
- 54. Arnold A, Thigpen CA, Beattie PF, Kissenberth MJ, Shanley E. Overuse physeal injuries in youth athletes. *Sports Health* 2017;9:139-147.
- 55. Mehta S, Tang S, Rajapakse C, Juzwak S, Dowling B. Chronic workload, subjective arm health, and throwing injury in high school baseball players: 3-year retrospective pilot study. *Sports Health* 2022;14:119-126.
- **56.** Zaremski JL, Zeppieri G Jr, Jones DL, et al. Unaccounted workload factor: Game-day pitch counts in high school baseball pitchers—An observational study. *Orthop J Sports Med* 2018;6:2325967118765255.
- 57. Freehill MT, Rose MJ, McCollum KA, Agresta C, Cain SM. Game-day pitch and throw count feasibility using a single sensor to quantify workload in youth baseball players. *Orthop J Sports Med* 2023;11: 23259671231151450.
- 58. Chalmers PN, Wimmer MA, Verma NN, et al. The relationship between pitching mechanics and injury: A review of current concepts. *Sports Health* 2017;9:216-221.
- **59.** Schwank A, Blazey P, Asker M, et al. 2022 Bern consensus statement on shoulder injury prevention, rehabilitation, and return to sport for athletes at all participation levels. *J Orthop Sports Phys Ther* 2022;52:11-28.
- Wilk KE, Arrigo CA. Rehabilitation of elbow injuries: Nonoperative and operative. *Clin Sports Med* 2020;39: 687-715.

61. Reinold MM, Gill TJ, Wilk KE, Andrews JR. Current concepts in the evaluation and treatment of the shoulder in overhead throwing athletes, part 2: Injury prevention and treatment. *Sports Health* 2010;2:101-115.

- 62. Major League Baseball. Guidelines for youth and adolescent pitchers. https://www.mlb.com/pitch-smart/pitching-guidelines. Accessed December 12, 2024.
- **63.** Hibberd EE, Oyama S, Myers JB. Rate of upper extremity injury in high school baseball pitchers who played catcher as a secondary position. *J Athl Train* 2018;53:510-513.
- **64.** Zaremski JL, Pazik M, Vasilopoulos T, Horodyski M. Workload risk factors for pitching-related injuries in high school baseball pitchers. *Am J Sports Med* 2024;52:1685-1691.
- 65. Keller RA, Marshall NE, Limpisvasti O, DeGiacomo AF, Banffy M, ElAttrache NS. Medial elbow pain during the return-to-throwing period after ulnar collateral ligament reconstruction in pitchers. *Orthop J Sports Med* 2018;6: 2325967118808782.
- **66.** Kurokawa D, Muraki T, Ishikawa H, et al. The influence of pitch velocity on medial elbow pain and medial epicondyle abnormality among youth baseball players. *Am J Sports Med* 2020;48:1601-1607.
- 67. Manzi J, Kew M, Zeitlin J, et al. Increased pitch velocity is associated with throwing arm kinetics, injury risk, and ulnar collateral ligament reconstruction in adolescent, collegiate, and professional baseball pitchers: A qualitative systematic review. *Arthroscopy* 2023;39:1330-1344.
- **68.** Platt BN, Zacharias AV, Conley C, et al. Association between pitch break on the 4-seam fastball and slider and shoulder injury in Major League Baseball pitchers: A case-control study. *Orthop J Sports Med* 2021;9: 23259671211038961.
- **69.** Hagglund M, Walden M, Ekstrand J. Previous injury as a risk factor for injury in elite football: A prospective study over two consecutive seasons. *Br J Sports Med* 2006;40: 767-772.
- **70.** Bullock GS, Thigpen CA, Noonan TK, Kissenberth MJ, Shanley E. Initial kinematic chain injuries increase hazard of subsequent arm injuries in professional baseball pitchers. *J Shoulder Elbow Surg* 2022;31:1773-1781.
- 71. Osbahr DC, Cain EL Jr, Raines BT, Fortenbaugh D, Dugas JR, Andrews JR. Long-term outcomes after ulnar collateral ligament reconstruction in competitive baseball players: Minimum 10-year follow-up. *Am J Sports Med* 2014;42:1333-1342.
- **72.** Erickson BJ, Chalmers PN, D'Angelo J, Ma K, Dines JS, Romeo AA. Do outcomes or subsequent injuries differ after ulnar collateral ligament reconstruction with palmaris versus hamstring autograft? *Am J Sports Med* 2019;47:1473-1479.
- **73.** Jea Fulton. Injury risk is altered by previous injury: A systematic review of the literature and presentation of causative neuromuscular factors. *Int J Sports Phys Ther* 2014;9:583-595.
- **74.** Shanley E, Thigpen C, Boes N, et al. Arm injury in youth baseball players: A 10-year cohort study. *J Shoulder Elbow Surg* 2023;32:S106-S111.
- **75.** Deal MJ, Richey BP, Pumilia CA, et al. Regional interdependence and the role of the lower body in elbow injury in baseball players: A systematic review. *Am J Sports Med* 2020;48:3652-3660.

- **76.** Garrison JC, Arnold A, Macko MJ, Conway JE. Baseball players diagnosed with ulnar collateral ligament tears demonstrate decreased balance compared to healthy controls. *J Orthop Sports Phys Ther* 2013;43: 752-758.
- 77. Mayes M, Salesky M, Lansdown DA. Throwing injury prevention strategies with a whole kinetic chain-focused approach. *Curr Rev Musculoskelet Med* 2022;15:53-64.
- **78.** Fortenbaugh D, Fleisig GS, Andrews JR. Baseball pitching biomechanics in relation to injury risk and performance. *Sports Health* 2009;1:314-320.
- **79.** Kibler W. Scapular dyskinesis and its relation to shoulder pain. *J Am Acad Orthop Surg* 2003;11:142-151.
- Slowik JS, Diffendaffer AZ, Crotin RL, Stewart MS, Hart K, Fleisig GS. Biomechanical effects of foot placement during pitching. Sports Biomech 2024;23:860-869.
- 81. Devaney LL, Denegar CR, Thigpen CA, Lepley AS, Edgar C, DiStefano LJ. Preseason neck mobility is associated with throwing-related shoulder and elbow injuries, pain, and disability in college baseball pitchers. *Orthop J Sports Med* 2020;8: 2325967120920556.
- **82.** Young JL, Herring SA, Press JM, Casazza BA. The influence of the spine on the throwing athlete. *J Back Musculoskelet Rehabil* 1996;7:5-17.
- **83.** Kibler WB, Sciascia A. The shoulder at risk: Scapular dyskinesis and altered glenohumeral rotation. *Oper Tech Sports Med* 2016;24:162-169.
- 84. Burkhart SS, Morgan CD, Kibler WB. The disabled throwing shoulder: Spectrum of pathology Part III: The SICK scapula, scapular dyskinesis, the kinetic chain, and rehabilitation. *Arthroscopy* 2003;19:641-661.
- **85.** Campbell B, Stodden D, Nixon M. Lower extremity muscle activation during baseball pitching. *J Strength Condit Res* 2010;24:964-971.
- 86. Saito M, Kenmoku T, Kameyama K, et al. Relationship between tightness of the hip joint and elbow pain in adolescent baseball players. *Orthop J Sports Med* 2014;2: 2325967114532424.
- 87. Plummer HA, Bordelon NM, Wasserberger KW, Opitz TJ, Anz AW, Oliver GD. Association between passive hip range of motion and pitching kinematics in high school baseball pitchers. *Int J Sports Phys Ther* 2021;16:1323-1329.
- **88.** Plummer HA, Cai Z, Dove H, et al. Hip abductor strength asymmetry: Relationship to upper extremity injury in professional baseball players. *Sports Health* 2023;15: 295-302.
- 89. Shanley E, Bailey LB, Rauh M, et al. Influence of a prevention program on arm injury risk: An RCT in adolescent pitchers. *Orthop J Sports Med* 2014;2: (7_suppl2).
- 90. Bullock GS, Thigpen CA, Collins GS, et al. Organizational risk profiling and education associated with reduction in professional pitching arm injuries: A natural experiment. *JSES Rev Rep Tech* 2023;3:295-302.
- 91. Beitzel K, Zandt JF, Buchmann S, et al. Structural and biomechanical changes in shoulders of junior javelin throwers: A comprehensive evaluation as a proof of concept for a preventive exercise protocol. *Knee Surg Sports Traumatol Arthrosc* 2016;24:1931-1942.

- 92. Matsel KA, Butler RJ, Malone TR, Hoch MC, Westgate PM, Uhl TL. Current concepts in arm care exercise programs and injury risk reduction in adolescent baseball players: A clinical review. *Sports Health* 2021;13: 245-250.
- **93.** Bailey LB, Thigpen CA, Hawkins RJ, Beattie PF, Shanley E. Effectiveness of manual therapy and stretching for baseball players with shoulder range of motion deficits. *Sports Health* 2017;9:230-237.
- 94. Shitara H, Yamamoto A, Shimoyama D, et al. Shoulder stretching intervention reduces the incidence of shoulder and elbow injuries in high school baseball players: A time-to-event analysis. *Sci Rep* 2017;7:45304.
- 95. Kennedy SM, Sheedy P, Klein B, et al. Differences in shoulder internal rotation strength between baseball players with ulnar collateral ligament reconstruction and healthy controls. *Orthop J Sports Med* 2022;10: 23259671211065025.

- 96. Ben Kibler W, Sciascia A. Kinetic chain contributions to elbow function and dysfunction in sports. *Clin Sports Med* 2004;23:545-552. viii.
- 97. Kibler WB, Sciascia A. Evaluation and management of scapular dyskinesis in overhead athletes. *Curr Rev Musculoskelet Med* 2019;12:515-526.
- **98.** Sakata J, Nakamura E, Suzuki T, et al. Efficacy of a prevention program for medial elbow injuries in youth baseball players. *Am J Sports Med* 2018;46:460-469.
- 99. Sakata J, Nakamura E, Suzuki T, et al. Throwing injuries in youth baseball players: Can a prevention program help? A randomized controlled trial. *Am J Sports Med* 2019;47:2709-2716.
- 100. Escamilla RF, Yamashiro K, Mikla T, Collins J, Lieppman K, Andrews JR. Effects of a short-duration stretching drill after pitching on elbow and shoulder range of motion in professional baseball pitchers. *Am J Sports Med* 2017;45:692-700.